Interleukin17A Promotes Postoperative Cognitive Dysfunction by Triggering β-Amyloid Accumulation via the Transforming Growth Factor-β (TGFβ)/Smad Signaling Pathway
نویسندگان
چکیده
Although postoperative cognitive dysfunction (POCD) is relatively common in elderly patients who have undergone major surgery, the mechanisms underlying this postoperative complication are unclear. Previously, we have investigated the role of cytokine-mediated hippocampal inflammation in the development of POCD in a rat model. Here, we sought to determine in mice the role of cytokine interleukin17A (IL17A) in POCD and to characterize the associated signaling pathways. Old mice underwent hepatectomy surgery in the presence or absence of IL17A monoclonal antibody, and cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimer's disease (AD) were assessed. We found that the level of IL17A in the hippocampus was increased in hepatectomy mice and that cognitive impairment after surgery was associated with the appearance of certain pathological hallmarks of AD: activation of astrocytes, β-amyloid1-42 (Aβ1-42) production, upregulation of transforming growth factor-β (TGFβ), and increased phosphorylation of signaling mother against decapentaplegic peptide 3 (Smad3) protein in the hippocampus. Surgery-induced changes in cognitive dysfunction and changes in Aβ1-42 and TGFβ/Smad signaling were prevented by the administration of IL17A monoclonal antibody. In addition, IL17A-stimulated TGFβ/Smad activation and Aβ1-42 expression were reversed by IL17A receptor small interfering RNA and a TGFβ receptor inhibitor in cultured astrocytes. Our findings suggest that surgery can provoke IL17A-related hippocampal damage, as characterized by activation of astrocytes and TGFβ/Smad pathway dependent Aβ1-42 accumulation in old subjects. These changes likely contribute to the cognitive decline seen in POCD.
منابع مشابه
Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملEffects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells
Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...
متن کاملExcess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy.
Disruption of the dystrophin complex causes muscle injury, dysfunction, cell death and fibrosis. Excess transforming growth factor (TGF) β signaling has been described in human muscular dystrophy and animal models, where it is thought to relate to the progressive fibrosis that characterizes dystrophic muscle. We now found that canonical TGFβ signaling acutely increases when dystrophic muscle is...
متن کاملKey role for ubiquitin protein modification in TGFβ signal transduction
The transforming growth factor β (TGFβ) superfamily of signal transduction molecules plays crucial roles in the regulation of cell behavior. TGFβ regulates gene transcription through Smad proteins and signals via non-Smad pathways. The TGFβ pathway is strictly regulated, and perturbations lead to tumorigenesis. Several pathway components are known to be targeted for proteasomal degradation via ...
متن کاملA decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes
The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuc...
متن کامل